
Is 'bosonic matter' unstable in 2D?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 653

(http://iopscience.iop.org/0305-4470/36/3/305)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 653–663 PII: S0305-4470(03)38696-2

Is ‘bosonic matter’ unstable in 2D?

E B Manoukian and C Muthaporn

School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Received 26 June 2002, in final form 15 October 2002
Published 7 January 2003
Online at stacks.iop.org/JPhysA/36/653

Abstract
An upper bound is derived for the exact ground-state energy in 2D, EN �
−(me4/2h̄2)(N3/2/50π2), of ‘bosonic matter’ consisting of N positive and N
negative charges with Coulombic interactions. This is to be compared with the
classic N7/5 3D-law of Dyson and gives rise to a more ‘violent’ collapse of
such matter in 2D for large N. The derivation is based on a rigorous analysis
which, in the process, controls the negative part of the Hamiltonian over its
positive kinetic energy part and detailed estimates needed for counting trial
wavefunctions of arbitrary states. A formal dimensional analysis in the style
of Dyson alone shows, in arbitrary dimensions of space d = 1, 2, . . . , that
EN � −(me4/2h̄2)CdN

ρ, ρ = (d + 4)/(d + 2), where Cd is a positive constant
depending on d, consistent with our rigorous bound,and we are led to conjecture
that ‘bosonic matter’ is unstable in all dimensions.

PACS numbers: 05.30.Jp, 11.10.−z

1. Introduction and orientation

Over thirty years ago, Dyson [1] made a remarkable analysis in deriving an upper bound for
the ground-state energy EN of the Hamiltonian

H ′ =
2N∑
i=1

p2
i

2mi

+
2N∑
i<j

e2εiεj

|xi − xj | (1)

consisting of N positive and N negative charges, where εi = ±1 in 3D giving rise to the famous
N7/5 law [1, 2] for bosons. The Dyson upper bound has now been improved [3] by over a
factor of 30 and is given by [3]

EN � −
(

me4

2h̄2

)
N7/5

62π4
(2)

where m is the smallest of the masses involved in (1). Such a power-law behaviour Nα , with
α > 1, implies a collapse of bosonic matter since the formation of such matter consisting of
(2N + 2N) particles will be favourable over two separate systems brought into contact, each
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consisting of (N + N) particles, and the energy released upon collapse, in the formation of the
former system, being proportional to [(2N)7/5 − 2(N)7/5], will be overwhelmingly large for
realistically large N, e.g., N ∼ 1023.

With the current interest in the physics of 2D and the connection of the spin and statistics
e.g., [4–7], it is essential to investigate such bosonic systems, of central importance, in 2D.
Our upper bound derivation for the ground-state energy in 2D is given by

EN � −
(

me4

2h̄2

)
N3/2

50π2
(3)

implying, in particular, collapse and, in general, a more ‘violent’ one for large N than in 3D.
Such collapsing matter may also be considered as collapsing planar matter sheets set side by
side in 3D.

Although many papers have appeared recently on the stability of matter, e.g., [2, 8–11]
and references therein, this paper is rather involved with the instability problem which is much
more difficult [11, p 29]. The reason is that the problem of instability provides, in general, the
necessary condition for the fermionic character of the electron for stability, while the analysis
involved with the stability problem establishes the fermionic character as a sufficient condition
for stability. Also as both signs of the charges are present in this work, the analysis becomes
much more involved than that involved with only one sign of the charge, e.g. [8].

Since the kinetic energy operator is positive, we have for an arbitrary state �, the bound
〈�|p2

i |�〉 � (mi/m)〈�|p2
i |�〉, where m is the smallest of the masses appearing in (1) (or it

may even be taken to be smaller than that), it is sufficient for the purpose of obtaining an upper
bound for the ground-state energy to consider instead of the Hamiltonian in (1), the following
one:

H =
2N∑
i=1

p2
i

2mi

+
2N∑
i<j

e2εiεj

|xi − xj | . (4)

For a quantitative treatment, m, for example, may be taken to coincide with the mass of the
electron.

In section 2, we summarize, for completeness, what is known [1, 3] of a general expression
for an upper bound of EN in terms of the expectation values of a single-particle kinetic energy
operator −h̄2∇2/2m, and the Coulomb potential e2/|x − x′|, with respect to single-particle
trial wavefunctions. Several basic estimates needed in our final analysis for deriving the
bound in (3), which develop a way of counting ordered quantum states in 2D, are established
in section 3. These estimates of central importance are then used to derive our upper bound in
section 4.

In estimating the ground-state energy of a system, trial functions, not necessarily
coinciding with the exact ground-state wavefunction, lead to upper bounds to it from the
very definition of a ground-state energy. The trial functions chosen in this work are quite
suitable for making explicit estimates and lead to high localization of the particles for large N
in conformity with a dimensional analysis of EN given below.

As we will see in the following sections, the two-dimensional case may be treated
rigorously and we have been interested in this analysis for several reasons. The immediate
physical question arises: can ‘bosonic matter’ arrange itself in stable two-dimensional, so-
called planar configurations? Our analysis shows that this cannot happen and such matter will
not sustain itself in such configurations. Also the question arises as to whether the collapse is
a characteristic of the dimensionality of space. A formal dimensional analysis in the style of
Dyson alone given below, in arbitrary dimensions d = 1, 2, . . . , shows that

EN � −(me4/2h̄2)CdN
(d+4)/(d+2)
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where Cd is a positive constant depending on d, and this estimate is consistent with our
rigorous bound in (3). According to this formal dimensional analysis, we are led to conjecture
that ‘bosonic matter ’ is unstable in all dimensions. There has also been much interest in
recent years in the physics of two dimensions, especially in condensed matter physics, and of
the role of the spin and statistics theorem in such a lower dimension. It is well known that
the latter theorem is tied up with the dimensionality of space, e.g. [4], and we concur with
Dyson that ‘bosonic matter’, not being subject to stringent constrained statistics, is necessarily
unstable, but as we now see this is also true in 2D. It is also an important theoretical question
to investigate if the change of the dimensionality of space will change such matter from an
‘implosive’ to a ‘stable’ or to an ‘explosive’ phase. The formal dimensional analysis given
indicates that this does not happen for all d. (Some of the present field theories speculate that
at early stages of our universe the dimensionality of space was not necessarily coinciding with
d = 3, and by a process which may be referred to as compactification of space, the present
three-dimensional character of space arose upon the evolution and the cooling down of the
universe.)

A preliminary rigorous variational analysis in deriving a lower bound for EN , vis à vis our
upper bound in (3), leads to singular expressions in our estimates due to the singular nature
of the Coulomb potential. (We note, for example, in passing, that the Coulomb potential
is locally square-integrable in 3D but not in 2D.) Also a preliminary analysis equivalent to
deriving the bound in (3) for d = 1 and d > 3 seems to lead to formidable mathematical
problems. For the former case, again, this is so because of the singular nature of the Coulomb
potential. For the latter cases, the counting of trial wavefunctions for arbitrary states seems to
require very extensive enumeration estimates. In a future report we hope to turn to all of these
extensions which are beyond the scope of this paper.

A formal dimensional analysis of EN in the style of Dyson may be given, for completeness,
for all space dimensions d = 1, 2, . . . , as reported above. To this end, let L denote the overall
extension of matter and let λ denote the range of two-particle correlations. The total energy
EN of the system may be formally written as

EN = E1
K + E2

K + EC

where E1
K is the kinetic energy associated with the overall system, E2

K being associated with
the kinetic energy of the internal motion of short-range correlations as a cooperative effect of
oppositely charged particles rushing to screen each other and EC being the Coulomb energy.

For N positive charges and N negative charges, an elementary dimensional analysis gives

E1
K � 2N

(
h̄2

2mL2

)
= Nh̄2

mL2
.

Around each particle, a charged cloud with an overall opposite charge will arise, giving
rise to an energy of the order −e2/λ for the interaction of each charge with its cloud, restricting
only to short-range correlations due to the overall neutrality of matter considered at large. Also
the self-energy of the cloud gives rise to an energy of the order +e2/2λ. That is, as an order
of magnitude estimate

EC � 2N

(
−e2

λ
+

e2

2λ

)
= −Ne2

λ
.

The charge cloud around each particle is produced by a cooperation of all particles within
a volume ∼(λ)d , with the number ν of these particles of the order ν � N(λ/L)d . To change
the charge of a cloud by one unit of charge, the probability density of each of the ν particles
changes as

|�|2 → |�|2 ± 1

ν
|�|2
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as a particle moves from the surface of the cloud to its interior to produce the net excess or
deficiency of one unit of charge within the cloud. For the relative change |δ�/�| of the
wavefunctions of each of the ν particles, we may then take

|δ�/�| � 1

2ν

which upon carrying out a Taylor expansion in λ gives the order of magnitude estimate

λ|∇�/�| � 1/2ν.

From this, we may infer that the kinetic energy per particle in each cloud, while forming the
latter, is of the order

K � h̄2

8m

1

(νλ)2
.

An order of magnitude estimate then gives

E2
K � (2N)ν

h̄2

8m

1

(νλ)2
= h̄2

4m

Ld

λd+2
.

Upon minimizing E1
K + E2

K = EK over L, we obtain

L ∼ λN1/(2+d)

and

EK � h̄2

mλ2
Nd/(2+d)Ad

where Ad is some positive constant depending on d. Finally, upon minimizing

EN = EK − Ne2/λ

over λ gives λ ∼ (h̄2/me2)N−2/(d+2), and for EN the expression

EN � −(me4/2h̄2)CdN
(d+4)/(2+d)

where Cd > 0 and depends on d. It is interesting to note that optimizing EN over L and λ,
gives

L ∼ (h̄2/me2)N−1/(2+d)

in conformity with our rigorous estimate in (43) with α = 1/4 (see also (45)) for d = 2. We
also note that ν ∼ N2/(2+d) which indicates that more particles participate, as a cooperative
effect, in screening each other as d decreases.

2. General upper bound expression of EN

We set z = (x, ε) and introduce trial two-particle states [1]

G(z, z′) =
k∑

α=0

λαcα(ε)cα(ε
′)�α(x)�α(x′) (5)

where �0(x),�1(x), . . . , �k(x) are mutually orthonormal and the integer k will be
conveniently chosen later, with coefficients in (5) given by [1]

λ0 = 1 λα = −1/2 α = 1, 2, . . . , k (6)

cα(ε) = 1√
2

{
1 α = 0
ε α = 1, 2, . . . , k.

(7)
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One may then define a 2N-particle wavefunction as follows:

�2N(z1, . . . , Z2N) =
∑
π

G(z(π1), z(π2)) · · · G(z(π2N−1), z(π2N)). (8)

The sum is over all permutations (π1, . . . , π2N) of (1, . . . , 2N). The wavefunction �2N

needs to be normalized. Since �N/‖�N‖ does not necessarily coincide with the ground-state
function of H, the expectation value of H with respect to �N/‖�N‖ cannot be less than the
corresponding ground-state energy. That is, the expression in (8) can only provide an upper
bound for the ground-state energy.

Derivation of a general upper bound expression for EN by carrying out, in the process,
the expectation value of H with respect to �2N/‖�2N‖ turns out to be very tedious [1, 3]. To
give the general expression for this upper bound, we define the following expectation values
with respect to single-particle trial wavefunctions �α(x):

Tα =
∫

d2x �∗
α(x)

(
− h̄2∇2

2m

)
�α(x) α = 0, 1, . . . , k (9)

I0α
=

∫
d2x d2x′ �∗

0 (x)�∗
α(x)

e2

|x − x′|�0(x
′)�α(x

′) α = 1, . . . , k. (10)

We then have the following general expression for the bound [3, equation (2.18)]:

EN � 1

2

k∑
α=1

Tα +

(
N − k

3

)
T0 +

1

3

[
N − (k − 2)

1

2

] (
−

k∑
α=1

I0α

)
(11)

where k < N and we note, in particular, that the coefficients of T0 and
(−∑k

α=1 I0α

)
are

strictly positive.

3. Basic estimates

To derive the bound in (3), we need, in the process, to establish the bounds given, in turn, in
(12), (18), (19) and (23).

To the above end, we consider the following construction. For each doublet (n1, n2) of
two natural numbers, we define a state specified by the tip of the vector n = (n1, n2). A
non-trivial permutation of (n1, n2) defines a different state. For example, (1, 2), (2, 1) define
two distinct states satisfying, however, the constraint n2 = 5.

For any such given allowed n2 (a natural number), let k denote the number of distinct
states, excluding the state (1, 1), with the constraint that the length squared of each vector
specifying such a state is less than or equal to n2. This is the total number of states, excluding
the state (1, 1), lying within, or falling on, a quarter of a circle of radius n in the so-called first
quadrant, i.e., for n1 � 1, n2 � 1.

Since by definition the state (1, 1) is excluded, the lowest possible value of n2 is 5. For
n2 = 5, we have k = 2 corresponding to the states (1, 2), (2, 1). The next allowed value for
n2 is 8, with k = 3, corresponding to the states (1, 2), (2, 1), (2, 2), and so on for other values
of n2 = 10, 13, 17, . . . . We now establish the following.

Proposition 1. For any allowed n2, as defined above, we have the following inequality for the
number of states k, also defined above, in relation to n:

k

n2
�

√
1 − 1

n2

(
1 − 3

2n

)
− 1

n
− 1

2
(12)

and the right-hand side of this inequality is strictly positive for allowed values of n2 � 29.
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N2

Ns

n2

n1

N1

s

1

1

1

Figure 1. s rectangles, each of unit height and bases of sizes N1, N2, . . . , Ns , where the Ni are
positive integers, with 1 � Ns � · · · � N1, are stacked on top of each other inside a quarter of a
circle of radius n. Bounds are obtained on N1, N2, . . . , Ns , such that the rectangles are within or
just touch the circumference of a quarter of a circle.

To establish (12), s rectangles, each of unit height and bases of sizes N1, N2, . . . , Ns ,
where the Ni are positive integers defined below with N1 � · · · � Ns , are stacked on top of
each other as shown in figure 1 inside a quarter of a circle of radius n. Since the height of each
rectangle is of one unit, we choose N1, . . . , Ns to be the largest positive integers such that

N2
1 + 1 � n2, . . . , N2

s + s2 � n2 (13)

to make sure that the rectangles fall within or just touch the circumference of a quarter of the
circle of radius n. That is, we take

N1 �
√

n2 − 1 � N1 + 1, . . . , Ns �
√

n2 − s2 � Ns + 1. (14)

Also Ns � 1 requires that 1 �
√

n2 − s2 � Ns + 1. Hence s is taken to be the largest positive
integer such that

s �
√

n2 − 1 � s + 1. (15)

Excluding the state (1, 1), the total number k of states which lie within or are on the
circumference of a quarter of the circle of radius n clearly satisfies

k �
s∑

j=1

Nj − 1 (16)

or

k �
s∑

j=1

(√
n2 − j 2 − 1

) − 1

�
s∑

j=1

[(n − j) − 1] − 1

= (n − 1)s − s(s + 1)

2
− 1.

(17)

Upon using both inequalities in (15), as the case may be, (17) leads to (12).
Many estimates of the sort in (12), involving corrections, are available in the literature.

A classic example of this is filling a sphere with smaller spheres (the so-called Swiss-cheese
theorem) see, e.g., [12, 13]. The estimate in (12), as it stands, is not, however, what is
ultimately needed. What we need is a more involved one which allows us to count (k − k′)
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states corresponding to two consecutive n2 > n′2 values which is of central importance in
deriving the upper bound for the ground-state energy in section 4. This estimate is given in
proposition 3. We first establish the following result.

Proposition 2. Let n′2 < n2 be consecutive allowed n2 values, then

n − n′ � 1 +
1

n′ (18)

and

n

[
1 − 1

n′

(
1 +

1

n′

)]
� n′. (19)

To derive (18), note that although n′2 is a natural number, n′ is not necessarily so.
Accordingly, let n′

0 be the largest positive integer such that n′
0 � n. That is, we may write

n′ = n′
0 + x 0 � x < 1. (20)

Consider the state specified by the vector n′′ = (n′
0 + 1, 1). Clearly, n′′ > n′. Since n2, n′2 are

consecutive with n2 > n′2, it follows that n′′ � n. Now

2n′(n′′ − n′) � n′′2 − n′2 = 2n′
0(1 − x) + (2 − x2)

which from n � n′′, 0 � x < 1, leads to (18).
Upon rewriting (18) as

n −
(

1 +
1

n′

)
� n′ (21)

and using the fact that n > n′, (19) follows.
For any consecutive n2 > n′2, we label the (k − k′) states, specified by those vectors all

of length squared equal precisely to n2 in an arbitrary order, as α = k′ + 1, k′ + 2, . . . , k. Let

C(n′) =
√

1 − 1

n′2

(
1 − 3

2n′

)
− 1

n′ − 1

2
(22)

which coincides with the right-hand side expression in (12) when n is replaced by n′. We then
have the following important result.

Proposition 3.

α � n2

[
1 − 1

n′

(
1 +

1

n′

)]2

C(n′) (23)

valid for n′2 � 29.

This inequality follows from that in (12) which leads, in the process, to

k > · · · > (k′ + 1) > k′ � n′2C(n′) (24)

and the one in (19). The constraint n′2 � 29 just ensures the positivity of C(n′). (For the state
specified by the vector n′ = (2, 5), for example, n′2 = 29.)

For n2 � 109, an elementary computer analysis shows that α � n2/5. On the other hand,
for n2 � 109, we may use our explicit inequality in (23) (valid for n2 up to infinity!) to
conclude that α > n2/5. That is, for all allowed n2,

α � n2/5. (25)
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4. Derivation of the upper bound

For orthonormal trial functions, we choose the Dyson ones [1]

�n(x) = 2

L
sin

n1πx1

L
sin

n2πx2

L
(26)

for 0 < xi < L, and vanishing outside this interval. We label the states as α = 0 for
n0 = (1, 1) and for α � 1, α = 1, 2, 3 for n = (1, 2), (2, 1), (2, 2), respectively and so on.

With our effort in deriving the bound given below, we have found the Dyson trial functions
most suitable for the problem at hand for the following reasons. (1) We need an orthonormal
set of functions, defined on a bounded interval, for each xi , vanishing at its endpoints with the
length of the interval, chosen optimally, becoming smaller and smaller as N increases, implying
the localization of the particles and eventual collapse for large N. (2) The trial orthonormal
functions in (26) are simple enough to make explicit sharp analytical estimates as is seen below.
(3) We have tried other orthonormal trial functions, such as the Hermite functions, with an
arbitrary scale parameter, and in all cases analysed that the negative interaction part becomes
very small compared to the kinetic energy part for large n, and hence are not appropriate as
trial functions. In particular, the normalization constant in (26) is independent of n unlike the
situation, for example, with Hermite functions. (4) The trial functions in (26) overlap, which
is what is needed for the interaction term in (28) to be non-vanishing, and a choice of non-
overlapping orthonormal states defined on sub-intervals of (0, L), for each xi , for example, is
not useful.

Let

T (n) =
〈
�n

∣∣∣∣− h̄2∇2

2m

∣∣∣∣ �n

〉
(27)

I (n) =
∫

d2x d2x′ �n0(x)�n(x)
e2

|x − x′|�n0(x
′)�n(x) (28)

where we note that the functions in (26) are real. The evaluation of the integral in (27) is
straightforward and gives

T (n) = h̄2

2m

n2π2

L2
(29)

T (n0) = h̄2

m

π2

L2
(30)

where n2
0 = 2. The evaluation of (28) is more involved. To obtain an appropriate bound for

(28), we define

Fnm(k) =
∫

d2x e−ik·x[�n(x)�m(x)] (31)

and hence ∫
d2x|�n(x)�m(x)|2 =

∫
d2k

(2π)2

√
|k||Fnm(k)| |Fnm(k)|√|k| . (32)

From the elementary Schwarz inequality, we also have(∫
d2x|�n(x)�m(x)|2

)2

�
(∫

d2k

(2π)2
|k||Fnm(k)|2

) (∫
d2k

(2π)2

|Fnm(k)|2
|k|

)
(33)
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or ∫
d2k

(2π)2

|Fnm(k)|2
|k| � (

∫
d2x|�n(x)�m(x)|2)2∫

d2k
(2π)2 |k||Fnm(k)|2 . (34)

Also the integral∫
d2x

e−ik·x

|x| = 2π

|k| (35)

gives

I (n) = (2πe2)

∫
d2k

(2π)2

|Fnm(k)|2
|k| . (36)

On the other hand,∫
d2k

(2π)2
|k||Fnm(k)|2 =

∫
d2x�n(x)�m(x)

√
−∇2�n(x)�m(x)

=
√

(n2 + m2)
π2

L2

∫
d2x|�n(x)�m(x)|2.

(37)

The inequality (34) then gives for (28)

I (n) � 2e2

L
√

n2 + 2
. (38)

From the basic estimate in (25), we then obtain

Tα � 5h̄2

2m

π2

L2
α (39)

I0α � 2e2

√
7kL

(40)

with Tα, I0α defined in (9), (10), respectively, and hence

k∑
α=1

Tα � 5

2

h̄2π2

mL2

k(k + 1)

2
(41)

k∑
α=1

(−I0α) � −2e2
√

k√
7L

. (42)

The latter two inequalities are needed in our upper bound in (11).
Upon setting

1

L
= me2

h̄2 A
Nα

π2
(43)

where A and α are optimally determined, we obtain from (11)

EN � me4

2h̄2

(
N1+2α

π2

) {
A2

[
2

(
1 − k

3N

)
+

5

4

k(k + 1)

N

]
− 4

3

(
1 − (k − 2)

2N

) √
k√
7

A

Nα

}
.

(44)

Optimally, we choose

A = 2

3

(
1 − (k−2)

2N

)√
k
7

1
Nα[

2
(
1 − k

3N

)
+ 5

4
k(k+1)

N

] (45)
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α = 1/4, and k as the largest positive integer k < N , such that

k �
(

8
5N

)1/2 � k + 1 (46)

for large N. The inequality in (44) then leads to

EN � −me4

2h̄2

N3/2

50π2
(47)

as stated in (3). The bound in (47) will be useful if, for example, the upper bound in (47) is
less than the ground-state energy of N isolated boson-equivalents of positronium atoms in 2D,
that is, if

− N3/2

50π2
< −N

2
(48)

where the 1/2 factor on the right-hand side arises as a result of the reduced mass of an atom.
Equation (48) gives the constraint N > (25π2)2 � 6.1 × 104 consistent with a large N in our
analysis. Physically, however, one is interested in much larger N, e.g., N ∼ 1023.

5. Conclusion

A rigorous upper bound for the exact ground-state energy was derived in (47) in 2D for
‘bosonic matter’ consisting of N positive and N negative charges with Coulombic interactions
giving rise to a N3/2 2D-law for bosons. Compared to the classic N7/5 3D-law of Dyson, this
gives rise to a more ‘violent’ collapse of such matter in 2D for large N. In particular, ‘bosonic
matter’ cannot arrange itself, in the bulk, in stable two-dimensional planar configurations. A
formal dimensional analysis of the ground-state energy gives rise to a N(d+4)/(d+2) law for
bosons in d = 1, 2, . . . , dimensional spaces, consistent with our rigorous bound, and led
us to conjecture that ‘bosonic matter’ is unstable in all dimensions. The extension of the
rigorous analysis carried out here to the cases d = 1 and d > 3 seems to lead to formidable
mathematical problems, as well as a derivation of a low bound to EN vis à vis our bound in
(47), and are beyond the scope of this paper. We hope to come back to such extensions in a
future report.
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